Page 71 - JSOM Fall 2023
P. 71
hemorrhagic shock: a randomized controlled efficacy trial. JAMA. 47. Guo J, Agola JO, Serda R, et al. Biomimetic rebuilding of multi-
1999;282(19):1857–1864. functional red blood cells: modular design using functional com-
29. Pan D, Rogers S, Misra S, et al. Erythromer (EM), a nanoscale ponents. ACS Nano. 2020;14(7):7847–7859.
bio-synthetic artificial red cell: proof of concept and in vivo effi- 48. Stellos K, Gawaz M. Platelets and stromal cell-derived factor-1 in
cacy results. Blood. 2016;128(22):1027. progenitor cell recruitment. Semin Thromb Hemost. 2007;33(2):
30. Sen Gupta A. Hemoglobin-based oxygen carriers: current state-of- 159–164.
the-art and novel molecules. Shock. 2019;52(1S Suppl 1):70–83. 49. Thon JN. SDF-1 directs megakaryocyte relocation. Blood. 2014;
31. Moradi S, Jahanian-Najafabadi A, Roudkenar MH. Artificial 124(2):161–163.
blood substitutes: first steps on the long route to clinical utility. 50. Hickman DA, Pawlowski CL, Shevitz A, et al. Intravenous syn-
Clin Med Insights Blood Disord. 2016;9:33–41. thetic platelet (SynthoPlate) nanoconstructs reduce bleeding and
32. Song BK, Light WR, Vandegriff KD, Tucker J, Nugent WH. Sys- improve ‘golden hour’ survival in a porcine model of traumatic
temic and microvascular comparison of lactated Ringer’s solution, arterial hemorrhage. Sci Rep. 2018;8(1):3118.
VIR-HBOC, and alpha-alpha crosslinked haemoglobin-based ox- 51. Fujiyama S, Hori N, Sato T, Enosawa S, Murata M, Kobayashi E.
ygen carrier in a rat 10% topload model. Artif Cells Nanomed Development of an ex vivo xenogeneic bone environment produc-
Biotechnol. 2020;48(1):1079–1088. ing human platelet-like cells. PLoS ONE. 2020;15(4):e0230507.
33. Fontes P, Lopez R, van der Plaats A, et al. Liver preservation with 52. Todd J, Bharadwaj VN, Nellenbach K, et al. Platelet-like particles
machine perfusion and a newly developed cell-free oxygen carrier reduce coagulopathy-related and neuroinflammatory pathologies
solution under subnormothermic conditions. Am J Transplant. post-experimental traumatic brain injury. J Biomed Mater Res
2015;15(2):381–394. Part B Appl Biomater. 2021;109(12):2268–2278.
34. Cui H, Zhu W, Huang Y, et al. In vitro and in vivo evaluation 53. Nandi S, Sproul EP, Nellenbach K, et al. Platelet-like particles
of 3D bioprinted small-diameter vasculature with smooth muscle dynamically stiffen fibrin matrices and improve wound healing
and endothelium. Biofabrication. 2019;12(1):015004. outcomes. Biomater Sci. 2019;7(2):669–682.
35. Latson GW. Perftoran (Vidaphor)-introduction to Western medi- 54. Sharma A, Arora S, Grewal P, Dhillon V, Khumar V. Recent in-
cine. Shock. 2019;52(1S Suppl 1):65–69. novations in delivery of artificial blood substitute: a review. Int J
36. Cronin WA, Khan K, Hall AA, Bodo M, Mahon RT. The effect App Pharm. 2011;3(2):1–5.
of the perfluorocarbon emulsion Oxycyte in an ovine model of 55. Sakai H, Horinouchi H, Tomiyama K, et al. Hemoglobin-vesicles
™
severe decompression illness. Undersea Hyperb Med. 2021;48(1): as oxygen carriers: influence on phagocytic activity and histo-
25–31. pathological changes in reticuloendothelial system. Am J Pathol.
37. Tenax Therapeutics. Responsible party. Safety and Tolerability of 2001;159(3):1079–1088.
Oxycyte in Patients with Traumatic Brain Injury (TBI). https:// 56. Sou K, Klipper R, Goins B, Tsuchida E, Phillips WT. Circulation
clinicaltrials.gov/ct2/show/NCT00908063?term=NCT00908063 kinetics and organ distribution of Hb-vesicles developed as a
&draw=2&rank=1. Accessed 19 December 2022. red blood cell substitute. J Pharmacol Exp Ther. 2005;312(2):
38. Bradshaw T. Responsible party. Study of oxycyte in severe closed 702–709.
head injury. https://clinicaltrials.gov/ct2/show/NCT00174980? 57. Khademhosseini A, Camci-Unal G. 3D Bioprinting in Regenera-
term=NCT00174980&draw=2&rank=1. Accessed 19 December tive Engineering: Principles and Applications. 1st ed. Boca Raton,
2022. FL: Taylor & Francis; 2018.
39. Fox W. Responsible party. Fluid filled lung oxygenation assistance 58. Devlin H. New hope for sickle cell patients as UK trial of lab grown
trial (FFLOAT). https://clinicaltrials.gov/ct2/show/NCT03041740 red blood cells begins. 6 Nov 2022. https://www.theguardian
?term=NCT03041740&draw=2&rank=1. Accessed 19 Decem- .com/science/2022/nov/07/new-hope-for-sickle-cell-patients-as-
ber 2022. uk-trial-of-lab-grown-red-blood-cells-begins. Accessed 9 January
40. Torres LN, Spiess BD, Torres Filho IP. Effects of perfluorocarbon 2023.
emulsions on microvascular blood flow and oxygen transport in 59. Ziemba B, Matuszko G, Bryszewska M, Klajnert B. Influence of
a model of severe arterial gas embolism. J Surg Res. 2014;187(1): dendrimers on red blood cells. Cell Mol Biol Lett. 2012;17(1):
324–333. 21–35.
41. Alayash AI. Hemoglobin-based blood substitutes and the treat- 60. Celikkin N, Presutti D, Maiullari F, et al. Tackling current bio-
ment of sickle cell disease: more harm than help? Biomolecules. medical challenges with frontier biofabrication and organ-on-a-
2017;7(1):2. chip technologies. Front Bioeng Biotechnol. 2021;9:732130
42. Glen KE, Workman VL, Ahmed F, Ratcliffe E, Stacey AJ, Thomas 61. Mackenzie CF, Dubé GP, Pitman A, Zafirelis M. Users guide to
RJ. Production of erythrocytes from directly isolated or Delta1 pitfalls and lessons learned about HBOC-201 during clinical tri-
Notch ligand expanded CD34+ hematopoietic progenitor cells: als, expanded access, and clinical use in 1,701 patients. Shock.
process characterization, monitoring and implications for manu- 2019;52(1S Suppl 1):92–99.
facture. Cytotherapy. 2013;15(9):1106–1117. 62. Van Hemelrijck J, Levien LJ, Veeckman L, Pitman A, Zafirelis Z,
43. Hsu W-T, Aulakh RPS, Traul DL, Yuk IH. Advanced microscale Standl T. A safety and efficacy evaluation of hemoglobin-based
bioreactor system: a representative scale-down model for bench- oxygen carrier HBOC-201 in a randomized, multicenter red blood
top bioreactors. Cytotechnology. 2012;64(6):667–678. cell controlled trial in noncardiac surgery patients. Anesth Analg.
44. Ratcliffe E, Glen KE, Workman VL, Stacey AJ, Thomas RJ. A novel 2014;119(4):766–776.
automated bioreactor for scalable process optimisation of haema- 63. Arnaud F, Sanders K, Sieckmann D, Moon-Massat P. In vitro al-
topoietic stem cell culture. J Biotechnol. 2012;161(3):387–390. teration of hematological parameters and blood viscosity by the
45. 3DPrint.com. Ruggedized nScrypt Bioprinter Allows Military Per- perfluorocarbon: Oxycyte. Int J Hematol. 2016;103(5):584–591.
sonnel to 3D Print Medical Products in Remote Areas. 4 October 64. Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers:
2019. https://3dprint.com/255549/ruggedized-nscrypt-bioprinter- review of products and trials. Artif Organs. 2010;34(8):622–634.
allows-military-personnel-to-3d-print-medical-products-remote
-areas/. Accessed 19 December 2022. PMID: 37253155; DOI: 10.55460/OVOP-V2QC
46. VoxelMatters. nScrypt’s Sciperio and partners developing bioman-
ufactured human blood. https://www.3dprintingmedia.network/
nscrypt-sciperio-developing-biomanufactured-human-blood/. Ac-
cessed 19 December 2022.
Artificial Blood Development | 69

