Page 37 - JSOM Fall 2020
P. 37
86. Giesbrecht GG, Steinman AM. Immersion into cold water. In: 99. Bruells CS, Bruells AC, Rossaint R, et al. Alaboratory compar-
Auerbach PS, ed. Wilderness Medicine. 6th ed. Philadelphia, PA: ison of the performance of the Buddy Lite and enFlow fluid
™
™
Elsevier; 2012:143–170. warmers. Anaesthesia. 2013;68(11):1161–1164.
87. GiesbrechtGG, Walpoth BH. Risk of burns during active external 100. Kim HJ, Yoo SM, Son HS, et al. Evaluation of the performance
rewarming for accidental hypothermia. Wilderness Environ Med. and safety of a newly developed intravenous fluid warmer. Artif
2019;30(4):431–436. Organs. 2015;39(7):591–596.
88. Irving GA, Noakes TD. The protective role of local hypothermia 101. Seo HJ, Kim SH, An TH, et al. Experimental comparison of per-
in tourniquetinduced ischaemia of muscle. J Bone Joint Surg Br. formances of Mega Acer Kit, Ranger and ThermoSens accord-
1985;67:297–301. ing to flow rates and distances. J Clin Monit Comput. 2018;32
89. Swanson AB, Livengood LC, Sattel AB. Local hypothermia to (6):1127–1134.
prolong safe tourniquettime. Clin Orthop Relat Res. 1991;(264): 102. Perl T, Kunze-Szikszay N, Bräuer A, et al. Aluminum release by
200–208. coated and uncoated fluid-warming devices. Anaesthesia. 2019;
90. Fish JS, McKee NH, Kuzon WM Jr, et al. The effect of hypother- 74(6):708–713.
mia on changes in isometric contractile function in skeletal muscle 103. US Food and Drug Administration. Class 1 device recall enFlow
after tourniquet ischemia. J Hand Surg Am. 1993;18:210–217. IV Fluid Warmer. https://www.accessdata.fda.gov/scripts/cdrh
91. Skjeldal S, Grogaard B, Nordsletten L, et al. Protective effect of /cfdocs/cfres/res.cfm?id=171533. Accessed 8 July 2020.
low-grade hypothermia in experimental skeletal muscle ischemia. 104. Pappas CG, Paddock H, Goyette P, et al. In-line microwave
Eur Surg Res. 1992;24:197–203. blood warming of in-date human packed red blood cells. Crit
92. Wolff LH, Adkins TF. Tourniquet problems in war injuries. Bull Care Med.1995;23:1243–1250.
US Army Med Dep. 1945;37:77–84. 105. Eastlund T, Van Duren A, Clay ME. Effect of heat on stored
93. Kragh JF Jr, Baer DG, Walters TJ. Extended (16-hour) tourniquet red cells during non-flow conditions in a blood-warming device.
application after combat wounds: a case report and review of Vox Sang. 1999;76:216–219.
current literature. J Orthop Trauma. 2007;21:274–278. 106. Hirsch J, Menzebach A, Welters ID, et al. Indicators of eryth-
94. Walters TJ, Mabry RL. Issues related to the use of tourniquets on rocyte damage after microwave warming of packed red blood
the battlefield. Mil Med. 2005;170:770–775. cells. Clin Chem. 2003;49:792–799.
95. Shackelford SA, Butler FK Jr, Kragh JF Jr, et al. Optimizing the 107. Weatherall A, Gill M, Milligan J, et al. Comparison of porta-
use of limb tourniquets in tactical combat casualty care: TCCC ble blood-warming devices under simulated pre-hospital con-
Guidelines Change 14-02. J Spec Oper Med. 2015;15(1):17–31. ditions: a randomized in-vitro blood circuit study. Anaesthesia.
96. Boyan CP, Howland WS. Blood temperature: a critical factor in 2019;74(8):1026–1032.
massive transfusion. Anesthesiology. 1961;22:559–563. 108. Poder TG, Nonkani WG, Tsakeu Leponkouo É. Blood warming
97. Butler FK, Holcomb JB, Kotwal RS, et al. Fluid resuscitation and hemolysis: a systematic review with meta-analysis. Transfus
for hemorrhagic shock in tactical combat casualty care: TCCC Med Rev. 2015;29(3):172–180.
Guidelines Change 14-01. J Spec Oper Med. 2014;14:13–38. 109. Poder TG, Pruneau D, Dorval J, et al. Effect of warming and
98. Butler FK Jr, Holcomb JB, Shackelford S, et al. Advanced resus- flow rate conditions of blood warmers on red blood cell integ-
citative care in tactical combat casualty care: TCCC Guidelines rity. Vox Sang. 2016;111(4):341–349.
Change 18-01. J Spec Oper Med. 2018;18(4):37–55.
Management of Hypothermia in Tactical Combat Casualty Care | 35